LYMPHOID NEOPLASIA Increased signaling through p62 in the marrow microenvironment increases myeloma cell growth and osteoclast formation

نویسندگان

  • Yuko Hiruma
  • Tadashi Honjo
  • Diane F. Jelinek
  • Jolene J. Windle
  • Jaekyoon Shin
  • G. David Roodman
  • Noriyoshi Kurihara
چکیده

Adhesive interactions between multiple myeloma (MM) cells and marrow stromal cells activate multiple signaling pathways including nuclear factor B (NFB), p38 mitogen-activated protein kinase (MAPK), and Jun N-terminal kinase (JNK) in stromal cells, which promote tumor growth and bone destruction. Sequestosome-1 (p62), an adapter protein that has no intrinsic enzymatic activity, serves as a platform to facilitate formation of signaling complexes for these pathways. Therefore, we determined if targeting only p62 would inhibit multiple signaling pathways activated in the MM microenvironment and thereby decrease MM cell growth and osteoclast formation. Signaling through NFB and p38 MAPK was increased in primary stromal cells from MM patients. Increased interleukin-6 (IL-6) production by MM stromal cells was p38 MAPK-dependent while increased vascular cell adhesion molecule-1 (VCAM-1) expression was NFB–dependent. Knocking-down p62 in patient-derived stromal cells significantly decreased protein kinase C (PKC ), VCAM-1, and IL-6 levels as well as decreased stromal cell support of MM cell growth. Similarly, marrow stromal cells from p62 / mice produced much lower levels of IL-6, tumor necrosis factor(TNF), and receptor activator of NFB ligand (RANKL) and supported MM cell growth and osteoclast formation to a much lower extent than normal cells. Thus, p62 is an attractive therapeutic target for MM. (Blood. 2009;113:4894-4902)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased signaling through p62 in the marrow microenvironment increases myeloma cell growth and osteoclast formation.

Adhesive interactions between multiple myeloma (MM) cells and marrow stromal cells activate multiple signaling pathways including nuclear factor kappaB (NF-kappaB), p38 mitogen-activated protein kinase (MAPK), and Jun N-terminal kinase (JNK) in stromal cells, which promote tumor growth and bone destruction. Sequestosome-1 (p62), an adapter protein that has no intrinsic enzymatic activity, serve...

متن کامل

LYMPHOID NEOPLASIA Osteoclast-gene expression profiling reveals osteoclast-derived CCR2 chemokines promoting myeloma cell migration

Multiple myeloma is characterized by the clonal expansion of malignant plasma cells (multiple myeloma cells [MMCs]), in the bone marrow. Osteolytic bone lesions are detected in 80% of patients because of increased osteoclastic bone resorption and reduced osteoblastic bone formation. MMCs are found closely associated with sites of increased bone resorption. Osteoclasts strongly support MMC survi...

متن کامل

IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells.

Macrophage inflammatory protein-1 alpha (MIP-1 alpha) gene expression is abnormally regulated in multiple myeloma (MM) owing to imbalanced expression of the acute myeloid leukemia-1A (AML-1A) and AML-1B transcription factors. We hypothesized that the increased expression ratios of AML-1A to AML-1B also induced abnormal expression of other hematopoietic and bone-specific genes that contribute to...

متن کامل

MULTIPLE MYELOMA Myeloma bone disease

Bone destruction is a hallmark of multiple myeloma, and recent studies demonstrated a strong interdependence between tumor progression and bone resorption. Increased bone resorption as a major characteristic of multiple myeloma is caused by osteoclast activation and osteoblast inhibition (uncoupling). Myeloma cells alter the local regulation of bone metabolism by increasing the receptor activat...

متن کامل

LYMPHOID NEOPLASIA SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK

Heat-shock protein 90 (Hsp90) acts as a molecular chaperone required for maintaining the conformational stability of client proteins regulating cell proliferation, survival, and apoptosis. Here we investigate the biologic significance of Hsp90 inhibition in multiple myeloma (MM) and other hematologic tumors using an orally available novel small molecule inhibitor SNX-2112, which exhibits unique...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009